7. Dragon ADR Init Position¶
Set Dragon's initial position to x=50, y=120
7.1. Option 1¶
>>> dragon = Dragon('Wawelski', 50, 120)
Pros and Cons:
Good: easy to use
Bad: not explicit enough
Bad: requires knowledge of API to answer what are those numbers
Bad: It does suggest, that x and y are some parameters to texture (for example width and height of a texture image, or gold and hit points)
Decision: rejected, not explicit
Example:
>>> dragon = Dragon('Wawelski', 0, 0)
>>> dragon = Dragon('Wawelski', 'img/dragon/alive.png', 0, 0)
Use Case:
>>> knn = KNearestNeighbors(3) # ok
>>> knn = KNearestNeighbors(3, [1,2,3]) # bad









7.2. Option 2¶
>>> dragon = Dragon('Wawelski', x=50, y=120)
Pros and Cons:
Good: easy to use
Good: short argument names
Good: verbose in this example
Good: you can assign
None
by default to set default pointGood: extensible, easy to add
z
with default value0
Bad: It does suggest, that x and y are some parameters to texture (for example width and height of a texture image)
Decision: rejected, not explicit enough
Example:
>>> dragon = Dragon('Wawelski', x=0, y=0)
>>> dragon = Dragon('Wawelski', texture='img/dragon/alive.png', x=0, y=0)
Use Case:
>>> knn = KNearestNeighbors(k=3) # ok
>>> knn = KNearestNeighbors(k=3, w=[1,2,3]) # bad
7.3. Option 3¶
>>> dragon = Dragon('Wawelski', posx=50, posy=120)
>>> dragon = Dragon('Wawelski', posX=50, posY=120)
Pros and Cons:
Good: simple, easy to use
Good: you can assign
None
by default to set default pointGood: extensible, easy to add
posZ
with default value0
Bad: not verbose
Decision: rejected, not explicit enough
Example:
>>> dragon = Dragon('Wawelski', posx=0, posy=0) # maybe, bad
Use Case:
>>> knn = KNearestNeighbors(k=3, wgt=[1,2,3]) # bad
7.4. Option 4¶
>>> dragon = Dragon('Wawelski', positionx=50, positiony=120)
>>> dragon = Dragon('Wawelski', positionX=50, positionY=120)
Pros and Cons:
Good: simple, easy to use
Good: you can assign
None
by default to set default pointGood: extensible, easy to add
positionZ
with default value0
Decision: candidate, but names could be better
Use Case:
>>> knn = KNearestNeighbors(k=3, weights=[1,2,3]) # ok
>>> df.plot(kind='line', subplots=True, color='grey', sharey=True) # bad
7.5. Option 5¶
>>> dragon = Dragon('Wawelski', position_x=50, position_y=120)
Pros and Cons:
Good: simple, easy to use
Good: you can assign
None
by default to set initial pointGood: extensible, easy to add
position_z
with default value0
Good: backward compatible
Decision: candidate
Use Case:
>>> df.plot(kind='line', sub_plots=True, color='grey', share_y=True) # ok
>>> df.plot(kind='line', sub_plots=True, color='grey', share_y_axis=True) # ok
>>> df.plot(kind='line', sub_plots=True, color='grey', share_axis_y=True) # ok
7.6. Option 6¶
>>> dragon = Dragon('Wawelski', (50, 120))
>>> dragon = Dragon('Wawelski', position=(50, 120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple, easy to use
Good: you can assign
None
to set defaultpos
Good: can set only one axis to
None
Good: always has to pass both
x
andy
coordinates togetherBad: always has to pass both
x
andy
coordinates togetherBad: you have to know that first is
x
and second isy
Bad: order is important, you cannot change it
Bad: unpacking
Bad: not extensible,
pos
will always be 2DBad: could be refactored to 3D using regexp:
pattern = r'[\(\[(\s*?:\d+|None\s*)\s*,\s*(\s*?:\d+|None\s*)[\)\]]'
Decision: rejected, not extensible
Example:
>>> dragon = Dragon('Wawelski', (0, 0)) # bad
>>> dragon = Dragon('Wawelski', position=(0, 0)) # ok
Use Case:
>>> np.random.randint(0,10, (3,3))
>>> np.random.randint(0,10, size=(3,3))
>>> pt = (50, 120)
>>>
>>> pt[0]
50
>>> pt[1]
120
>>>
>>> pt[0], pt[1]
(50, 120)
7.7. Option 7¶
>>> dragon = Dragon('Wawelski', {'x':50, 'y':120})
>>> dragon = Dragon('Wawelski', position={'x':50, 'y':120})
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: you can assign
None
by default to set default pointGood: order is not important
Good: always has to pass both
x
andy
Good: possible to extend to 3D with refactoring
Good: easier to refactor than tuple -
pattern = r'\{\s*"x"\s*:\s*(?:\d+|None)\s*,\s*"y"\s*:\s*(?:\d+|None)\s*\}'
Bad: always has to pass both
x
andy
Bad: unpacking
Bad: not extensible,
position
will always be 2DDecision: rejected, not extensible
Use Case:
>>> pt = {'x':50, 'y':120}
>>>
>>> pt['x']
50
>>> pt['y']
120
7.8. Option 8¶
>>> from collections import namedtuple
>>>
>>>
>>> Position = namedtuple('Point', ['x', 'y'])
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple, easy to use
Good: always has to pass both
x
andy
Good: possible to extend to 3D (Python will crash if
z
not found)Good: keyword argument is not required, class name is verbose enough
Good: lightweight, in the end this is a tuple
Bad: always has to pass both
x
andy
Bad: not extensible,
position
will always be 2DDecision: rejected, could be done better
Use Case:
>>> pt = Point(x=50, y=120)
>>>
>>> pt[0], pt[1]
(50, 120)
>>>
>>> pt.x, pt.y
(50, 120)
7.9. Option 9¶
>>> from typing import NamedTuple
>>>
>>>
>>> class Position(NamedTuple):
... x: int
... y: int
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple, easy to use
Good: verbose
Good: you can assign
None
by default to set defaultposition
Good: very easy to extend to 3D
Good: keyword argument is not required, class name is verbose enough
Good: lightweight, in the end this is a tuple
Decision: candidate
Use Case:
>>> pt = Point(x=50, y=120)
>>>
>>> pt[0], pt[1]
(50, 120)
>>>
>>> pt.x, pt.y
(50, 120)
7.10. Option 10¶
>>> from typing import TypedDict
>>>
>>>
>>> class Position(TypedDict):
... x: int
... y: int
>>>
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position={'x': 50, 'y': 120})
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple
Good: you can assign
position=None
by default to set defaultposition
Good: relatively easy to extend to 3D
Good: keyword argument is not required, class name is verbose enough
Bad:
TypeDict
does not support default valuesDecision: rejected, better than dict, does not support default values
Use Case:
>>> pt = Point(x=50, y=120)
>>>
>>> pt['x']
50
>>> pt['y']
120
7.11. Option 11¶
>>> from typing import TypedDict, Required, NotRequired
>>>
>>>
>>> class Position(TypedDict):
... x: Required[int]
... y: Required[int]
... z: NotRequired[int]
>>>
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position={'x': 50, 'y': 120})
Good: data is stored together (
x
andy
coordinates)Good: simple
Good: you can assign
position=None
by default to set defaultposition
Good: relatively easy to extend to 3D
Good: keyword argument is not required, class name is verbose enough
Bad:
TypeDict
does not support default valuesDecision: rejected, does not support default values
Use Case:
>>> pt = Point(x=50, y=120)
>>>
>>> pt['x']
50
>>> pt['y']
120
7.12. Option 12¶
>>> class Position:
... x: int
... y: int
...
... def __init__(self, x: int = 0, y: int = 0) -> None:
... self.x = x
... self.y = y
>>>
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: very common pattern
Good: easy to use
Good: faster than dataclasses
Good: more explicit than
dataclass
Good: easy to extend to 3D
Good: can set default values
Good: keyword argument is not required, class name is verbose enough
Bad: allows creation of not existing attributes
Bad: allows for attribute mutation
Decision: maybe, has some limitation
Use Case:
>>> pt = Point(x=1, y=2)
>>>
>>> pt.x, pt.y
(1, 2)
>>>
>>> pt.x = 10 # ok
>>> pt.y = 20 # ok
>>> pt.notexisting = 30 # ok
7.13. Option 13¶
>>> class Position:
... __slots__ = ('x', 'y')
... x: int
... y: int
...
... def __init__(self, x: int = 0, y: int = 0) -> None:
... self.x = x
... self.y = y
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: common pattern
Good: easy to use
Good: more explicit than
dataclass
Good: easy to extend to 3D
Good: can set default values
Good: keyword argument is not required, class name is verbose enough
Bad: too complex for now
Bad: allows for attribute mutation
Decision: maybe, too complex for now
Use Case:
>>> pt = Point(x=1, y=2)
>>>
>>> pt.x, pt.y
(1, 2)
>>>
>>> pt.x = 10 # ok
>>> pt.y = 20 # ok
>>> pt.notexisting = 30 # error
7.14. Option 14¶
>>> from dataclasses import dataclass
>>>
>>>
>>> @dataclass
... class Position:
... x: int
... y: int
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple, easy to use
Good: verbose
Good: you can assign
None
to set defaultposition
Good: very easy to extend to 3D
Good: keyword argument is not required, class name is verbose enough
Bad: allows creation of not existing attributes
Bad: allows for attribute mutation
Decision: maybe, has some limitation
Use Case:
>>> pt = Point(x=1, y=2)
>>>
>>> pt.x, pt.y
(1, 2)
>>>
>>> pt.x = 10 # ok
>>> pt.y = 20 # ok
>>> pt.notexisting = 30 # ok
7.15. Option 15¶
>>> from dataclasses import dataclass
>>>
>>>
>>> @dataclass(frozen=True, slots=True)
... class Position:
... x: int = 0
... y: int = 0
>>>
>>> dragon = Dragon('Wawelski', Position(50, 120))
>>> dragon = Dragon('Wawelski', Position(x=50, y=120))
>>> dragon = Dragon('Wawelski', position=Position(50, 120))
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Pros and Cons:
Good: data is stored together (
x
andy
coordinates)Good: simple, easy to use
Good: verbose
Good: you can assign
None
by default to set defaultposition
Good: very easy to extend to 3D
Good: keyword argument is not required, class name is verbose enough
Good: is faster and leaner than simple dataclass
Good: does not allow for attribute mutation
Good: does not allow for attribute creation
Bad: more complicated than mutable dataclasses
Decision: candidate
Use Case:
>>> pt = Point(x=1, y=2)
>>>
>>> pt.x, pt.y
(1, 2)
>>>
>>> pt.x = 10 # error
>>> pt.y = 20 # error
>>> pt.notexisting = 30 # error
7.16. Decision¶
>>> class Dragon:
... def __init__(name: str, /, *, position_x: int, position_y: int, ) -> None:
... ...
>>>
>>>
>>> dragon = Dragon('Wawelski', position_x=50, position_y=120)
Pros and Cons:
Good: simple
Good: explicit
Good: verbose
Good: extensible
7.17. Future¶
>>> class Dragon:
... def __init__(name: str, /, *, position: Position) -> None:
... ...
>>>
>>>
>>> dragon = Dragon('Wawelski', position=Position(x=50, y=120))
Choices:
NameTuple
,dataclass(frozen=True, slots=True)
Good: explicit
Good: verbose
Good: extensible
Bad: to complicated for now